Stereoselectivity and Carbon-14 Isotope Effect in Methyl Group Transfer from s-Butyldimethylsulphonium to para-Thiocresolate Ion

By Gunnar Grue-Sørensen and Anders Kjer*
(Department of Organic Chemistry, The Technical University of Denmark, 2800 Lyngby, Denmark)
and Elzbieta Wieczorkowska
(Chemistry Department, Royal Veterinary and Agricultural University, 1871 Copenhagen, Denmark)

Summary The large rate-difference, observed in transfer of the prochiral methyl groups from ($R S$)-s-butyldimethylsulphonium p-toluenesulphonate (1) to p-thiocresolate, is attributed, by stereospecific ${ }^{14} \mathrm{C}$-labelling, to the compound operation of a small diastereotopic selectivity ($<4 \%$) and a large isotope effect.

Several S-methyl sulphonium ions are biologically important methylating agents. ${ }^{1}$ In principle, the transfer of diastereotopic methyl groups from a monochiral dimethylsulphonium ion, e.g. ($R S$)-s-butyldimethylsulphonium ion (1), \dagger to a receptor, e.g. the p-thiocresolate ion, must proceed with different rates. We report the magnitude of this difference for the methyl groups, Me_{S} and Me_{R}, of (1).

Conversion (Scheme 1) of the racemic sulphide (2) into a nearly $1: 1$ mixture of the salts (3) \dagger and (4), \dagger followed by fractional crystallization (from MeCN), afforded the $\left(R_{\mathrm{C}} S_{\mathrm{s}}\right)-\left(S_{\mathrm{C}} R_{\mathrm{F}}\right)$-salt (3), $\dagger \ddagger$ m.p. $116-119{ }^{\circ} \mathrm{C}$ (decomp.), δ $\left(\mathrm{CD}_{3} \mathrm{CN}\right) 2 \cdot 87$ (SMe), containing $<4 \%$ of the diastereomeric salt (4) $\dagger\left[\begin{array}{ll}\delta & 2 \cdot 80(S M e)] ; \text { the structure of (3) was }\end{array}\right.$
established by X-ray crystallography of the corresponding perchlorate. ${ }^{2}$ Decarboxylation of (3) and (4) afforded the salt (1),$\dagger \ddagger$ m.p. $80-82^{\circ} \mathrm{C} ; \delta\left(\mathrm{CD}_{3} \mathrm{CN}\right) 2.77\left(\mathrm{Me}_{S}\right)$ and 2.83 $\left(\mathrm{Me}_{R}\right) . \S$ Repetition of the same sequence, now with $\mathrm{Br}^{14} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$, gave, via ${ }^{14} \mathrm{C}$-labelled (3), the chiral ($R_{\mathrm{C}} R_{\mathrm{B}}$)$\left(S_{\mathrm{C}} S_{\mathrm{s}}\right)$-salt (5) \dagger [containing $<10 \%$ of (6) $\dagger \S$] which was recrystallised to constant activity; this on thermal equilibration (MeCN, $74{ }^{\circ} \mathrm{C}, 27 \mathrm{~h}$), produced a ca. 1:1 mixture§ of (5) \dagger and (6). \dagger

Reaction of (1) with sodium p-thiocresolate proceeded readily to give an equimolar mixture of sulphides, converted, for the sake of convenient analysis, into the corresponding N - p-toluenesulphonyl sulphimides, that could be cleanly separated by chromatography into $(\mathbf{7})^{3}$ and $(8)^{4}$ (Scheme 2); the former was a mixture of diastereomers. Repetition of the same sequence, starting, in one series, from (5) \dagger [containing $<10 \%$ of $(6) \dagger$], and, in the other, from the equilibrium mixture of (5) \dagger and (6), \dagger produced radioactive specimens of (7) and (8), which were crystallized to constant specific activity (Table).

\dagger Only one enantiomer is depicted.

\ddagger Combustion analyses of these compounds were within 0.4% of theory.
§ Established by ${ }^{1} \mathrm{H}$ n.m.r. comparison with $\left(R_{\mathrm{C}} S_{\mathrm{S}}\right)-\left(S_{\mathrm{C}} R_{\mathrm{s}}\right)$-s-butylmethyl- $\left[{ }^{2} \mathrm{H}_{3}\right]$ methylsulphonium p-toluenesulphonate, produced by exchange of (3) with $\mathrm{D}_{2} \mathrm{O}$, followed by decarboxylation in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Table

$A(5)^{\text {a }}$	$\underset{(1: 1)}{A(5)}$	$A(7)$	A (8)	$A(7) / A(8)$	Mean values
1.000		0.527	$0 \cdot 460$	$1.147 \pm 0.037\}$	$1 \cdot 144 \pm 0 \cdot 023^{\text {b }}$
$1 \cdot 000$		$0 \cdot 529$	$0 \cdot 464$	$1 \cdot 140 \pm 0.028\}$	
	1.000	0.534	0.455	$1.174 \pm 0.020)$	
	1.000	$0 \cdot 525$	0.456	$1 \cdot 152 \pm 0.027\}$	$1 \cdot 160 \pm 0.015^{c}$
	$1 \cdot 000$	$0 \cdot 523$	0.453	1.155 ± 0.028	

a $A(i)$: relative specific activity of compound (i); specific activities were within the range of $0 \cdot 3-3 \cdot 2 \mu \mathrm{Ci} \mathrm{mmol}{ }^{-1}$, measured with mean errors varying between $1 \cdot 2$ and 2.2%, including an estimated 1% contribution from possible impurities. $<10 \%$ of the activity arises from contamination with (6). \dagger Counting efficiencies were separately determined by internal calibration. b Corresponding to the value 1.14 ± 0.02 for homogeneous (5), \dagger obtained by correction for a content of 10% of $(6) \cdot \dagger$ corrected value for homogeneous $(6), \dagger 1 \cdot 18 \pm 0 \cdot 03$.

The diastereotopic contribution, D, to the observed selectivity, expressed in terms of rate constants, indexed as

(1)

(4)

1

(2)
(3)

Scheme 1. Reagents: i, $\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{H}-\mathrm{AgOTs}-\mathrm{MeCN}, 50^{\circ} \mathrm{C}, 20 \mathrm{~h}$, 91%; ii, $\mathrm{Bu}_{3} \mathrm{~N}-\mathrm{Me}_{2} \mathrm{CO}, 50{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$, recryst. ($\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOAc}$), $70 \% \quad \mathrm{Ts}=p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$.
relating to the appropriate ${ }^{12} \mathrm{C}$ - and ${ }^{14} \mathrm{C}$-methyl groups of the salts (1) $\dagger(\mathbf{5}), \dagger$ and (6), \dagger can be expressed as: $D=k_{R}(\mathbf{1}) / k_{S^{-}}$

(5)

(6)
$(1)=\left[\begin{array}{llll}k_{12} & (5) / k_{14} & (5) \times k_{14} & (6) / k_{12} \\ (6)\end{array}\right]^{\frac{1}{2}} \times\left(I_{R} / I_{S} \times I_{R}^{*} /\right.$ $\left.I^{*}{ }_{s}\right)^{\frac{1}{2}}$, where I and I^{*} denote primary and secondary isotope effects, respectively. On the assumption that $I_{R}=I_{S}$ and $I^{*}{ }_{R}=I^{*}{ }_{S}$, and equalling $k_{12}(5) / k_{14}(5)$ with 1.14 ± 0.02 and $k_{12}(6) / k_{14}(6)$ with 1.18 ± 0.03 (Table), it follows that $D=[(1 \cdot 14 \pm 0.02) /(1 \cdot 18 \pm 0.03)]^{\frac{1}{2}}=0.98$ ± 0.02. For the observed compound isotope effect I one obtains: $I=\left(I_{S} \times I_{R}^{\prime}\right)^{\frac{1}{2}} /\left(I_{S}^{*} \times I^{*}{ }_{R}\right)^{\frac{1}{2}}=k_{12} \quad(5) / k_{14}$ (5) $\times k_{12}(6) / k_{14} \quad(6)^{\frac{1}{2}}=[(1.14 \pm 0.02) \times(1 \cdot 18 \pm$ $0.03)]^{\frac{1}{2}}=1 \cdot 16 \pm 0.02$.

Scheme 2. Reagents: i, $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SNa}$-DMF, $22{ }^{\circ} \mathrm{C}, \mathbf{1 h}$; ii, p $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}(\mathrm{Cl}) \mathrm{Na}$-DMF, $22^{\circ} \mathrm{C}, 1 \mathrm{~h}$; chromatographic separation, overall yields: $(7 ; 35-65 \%),(8,50-70 \%)$. DMF $=$ dimethylformamide, $\mathrm{Ts}_{2}^{r}=p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$.

We conclude that the large difference observed in the rate of transfer of the methyl groups of the salts (5) \dagger and (6) \dagger can be accounted for as a combined effect of a small diastereotopic contribution ($<4 \%$) and a compound isotope effect (ca. 1•16), the magnitude of which, we believe, has hardly ever been surpassed, though comparable primary ${ }^{12} \mathrm{C} /{ }^{14} \mathrm{C}$-isotope effects have been reported for reactions of presumably analogous type. ${ }^{5}$

We thank Dr. E. Kelstrup for kind assistance.
(Received, 8th March 1977; Com. 226.)

[^0]
[^0]: 1 'Transmethylation and Methionine Biosynthesis,' eds. S. K. Shapiro and F. Schlenk, University of Chicago Press, Chicago, 1965
 ${ }^{2}$ G. Grue-Sørensen, A. Kjær, R. Norrestam, and E. Wieczorkowska, Acta Chem. Scand., 1977, in the press.
 ${ }^{3}$ D. Leaver and F. Challenger, J. Chem. Soc., 1957, 39.
 ${ }^{4}$ K. Tsujihara, N. Furukawa, K. Oae, and S. Oae, Bull. Chem. Soc. Japan, 1969, 42, 2631.
 ${ }^{5}$ M. L. Bender and D. F. Hoeg, J. Amer. Chem. Soc., 1957, 79, 5649.

