Stereoselectivity and Carbon-14 Isotope Effect in Methyl Group Transfer from s-Butyldimethylsulphonium to *para*-Thiocresolate Ion

By GUNNAR GRUE-SØRENSEN and ANDERS KJÆR*

(Department of Organic Chemistry, The Technical University of Denmark, 2800 Lyngby, Denmark)

and Elzbieta Wieczorkowska

(Chemistry Department, Royal Veterinary and Agricultural University, 1871 Copenhagen, Denmark)

Summary The large rate-difference, observed in transfer of the prochiral methyl groups from (RS)-s-butyldimethylsulphonium *p*-toluenesulphonate (1) to *p*-thiocresolate, is attributed, by stereospecific ¹⁴C-labelling, to the compound operation of a small diastereotopic selectivity (<4%) and a large isotope effect.

SEVERAL S-methyl sulphonium ions are biologically important methylating agents.¹ In principle, the transfer of diastereotopic methyl groups from a monochiral dimethylsulphonium ion, *e.g.* (*RS*)-s-butyldimethylsulphonium ion (1),[†] to a receptor, *e.g.* the *p*-thiocresolate ion, must proceed with different rates. We report the magnitude of this difference for the methyl groups, Me_S and Me_R, of (1).

Conversion (Scheme 1) of the racemic sulphide (2) into a nearly 1:1 mixture of the salts (3)[†] and (4),[†] followed by fractional crystallization (from MeCN), afforded the $(R_{\rm C}S_8)-(S_{\rm C}R_8)$ -salt (3),[†][‡] m.p. 116—119 °C (decomp.), δ (CD₃CN) 2.87 (SMe), containing < 4% of the diastereomeric salt (4)[†] [δ 2.80 (SMe)]; the structure of (3) was

established by X-ray crystallography of the corresponding perchlorate.² Decarboxylation of (3) and (4) afforded the salt (1),†‡ m.p. 80—82 °C; δ (CD₃CN) 2.77 (Me₅) and 2.83 (Me_R).§ Repetition of the same sequence, now with Br¹⁴CH₂CO₂H, gave, via ¹⁴C-labelled (3), the chiral (R_cR_8)– (S_cS_8)-salt (5)† [containing < 10% of (6)†§] which was recrystallised to constant activity; this on thermal equilibration (MeCN, 74 °C, 27 h), produced a ca. 1:1 mixture§ of (5)† and (6).†

Reaction of (1) with sodium p-thiocresolate proceeded readily to give an equimolar mixture of sulphides, converted, for the sake of convenient analysis, into the corresponding N-p-toluenesulphonyl sulphimides, that could be cleanly separated by chromatography into (7)³ and (8)⁴ (Scheme 2); the former was a mixture of diastereomers. Repetition of the same sequence, starting, in one series, from (5)[†] [containing < 10% of (6)[†]], and, in the other, from the equilibrium mixture of (5)[†] and (6),[†] produced radioactive specimens of (7) and (8), which were crystallized to constant specific activity (Table).

 \ddagger Combustion analyses of these compounds were within 0.4% of theory.

§ Established by ¹H n.m.r. comparison with $(R_{\rm C}S_8)-(S_{\rm C}R_8)$ -s-butylmethyl-[²H₃]methylsulphonium *p*-toluenesulphonate, produced by exchange of (3) with D₂O, followed by decarboxylation in $({\rm CD}_3)_2{\rm CO}$.

[†] Only one enantiomer is depicted.

TABLE					
A (5) ^a	A (5) + A (6) (1:1)	A (7)	A (8)	A (7)/A (8)	Mean values
1.000 1.000	1.000 1.000 1.000	0·527 0·529 0·534 0·525 0·523	$\begin{array}{c} 0.460 \\ 0.464 \\ 0.455 \\ 0.456 \\ 0.453 \end{array}$	$ \begin{array}{c} 1 \cdot 147 \pm 0 \cdot 037 \\ 1 \cdot 140 \pm 0 \cdot 028 \\ 1 \cdot 174 \pm 0 \cdot 020 \\ 1 \cdot 152 \pm 0 \cdot 027 \\ 1 \cdot 155 \pm 0 \cdot 028 \end{array} \} $	$egin{array}{rl} 1\cdot 144 \pm 0\cdot 023^{ ext{b}} \ 1\cdot 160 \pm 0\cdot 015^{ ext{c}} \end{array}$

^a A(i): relative specific activity of compound (i); specific activities were within the range of 0.3—3.2 μ Ci mmol⁻¹, measured with mean errors varying between 1.2 and 2.2%, including an estimated 1% contribution from possible impurities. < 10% of the activity arises from contamination with (6).† Counting efficiencies were separately determined by internal calibration. ^b Corresponding to the value 1.14 ± 0.02 for homogeneous (5), \dagger obtained by correction for a content of 10% of (6). \dagger ° Corrected value for homogeneous (6), \dagger 1.18 \pm 0.03.

The diastereotopic contribution, D, to the observed selectivity, expressed in terms of rate constants, indexed as

SCHEME 1. Reagents: i, BrCH₂CO₂H-AgOTs-MeCN, 50 °C, 20 h, 91%; ii, Bu₃N-Me₂CO, 50 °C, 10 min, recryst. (Me₂CO-EtOAc), 70%. Ts = p-MeC₄H₄SO₂.

relating to the appropriate ¹²C- and ¹⁴C-methyl groups of the salts (1)[†] (5),[†] and (6),[†] can be expressed as: $D = k_R(1)/k_{s}$ -

(1) = $[k_{12} \ (5)/k_{14} \ (5) \times k_{14} \ (6)/k_{12} \ (6)]^{\frac{1}{2}} \times (I_R/I_S \times I_R^*/I_S)^{\frac{1}{2}}$, where I and I* denote primary and secondary isotope effects, respectively. On the assumption that $I_R = I_s$ and $I_R^* = I_s^*$, and equalling k_{12} (5)/ k_{14} (5) with 1.14 ± 0.02 and k_{12} (6) $/k_{14}$ (6) with 1.18 ± 0.03 (Table), it follows that $D = [(1.14 \pm 0.02)/(1.18 \pm 0.03)]^{\frac{1}{2}} = 0.98$ ± 0.02 . For the observed compound isotope effect I one obtains: $I = (I_s \times I_R)^{\frac{1}{2}}/(I_s^* \times I_R^*)^{\frac{1}{2}} = k_{12} \quad (5)/k_{14}$ (5) $\times k_{12} \quad (6)/k_{14} \quad (6)^{\frac{1}{2}} = [(1.14 \pm 0.02) \times (1.18 \pm 0.03)]^{\frac{1}{2}} = 1.16 \pm 0.02.$

We conclude that the large difference observed in the rate of transfer of the methyl groups of the salts (5)[†] and (6)[†] can be accounted for as a combined effect of a small diastereotopic contribution (< 4%) and a compound isotope effect (ca. 1.16), the magnitude of which, we believe, has hardly ever been surpassed, though comparable primary ¹²C/¹⁴C-isotope effects have been reported for reactions of presumably analogous type.5

We thank Dr. E. Kelstrup for kind assistance.

(Received, 8th March 1977; Com. 226.)

- ¹ 'Transmethylation and Methionine Biosynthesis,' eds. S. K. Shapiro and F. Schlenk, University of Chicago Press, Chicago, 1965
 ² G. Grue-Sørensen, A. Kjær, R. Norrestam, and E. Wieczorkowska, Acta Chem. Scand., 1977, in the press.
 ³ D. Leaver and F. Challenger, J. Chem. Soc., 1957, 39.
 ⁴ K. Tsujihara, N. Furukawa, K. Oae, and S. Oae, Bull. Chem. Soc. Japan, 1969, 42, 2631.
 ⁵ M. L. Barden and P. Ukara, Chem. Chem. Chem. Chem. Soc. Japan, 1969, 42, 2631.

- ⁵ M. L. Bender and D. F. Hoeg, J. Amer. Chem. Soc., 1957, 79, 5649.